Paper Reference(s) 6678 Edexcel GCE Mechanics M2 Advanced Level Friday 25 January 2013 – Afternoon Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Mechanics M2), the paper reference (6678), your surname, other name and signature.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. There are 7 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

P41480A

- 1. Two uniform rods AB and BC are rigidly joined at B so that $\angle ABC = 90^{\circ}$. Rod AB has length 0.5 m and mass 2 kg. Rod BC has length 2 m and mass 3 kg. The centre of mass of the framework of the two rods is at G.
 - (a) Find the distance of G from BC.

The distance of G from AB is 0.6 m. The framework is suspended from A and hangs freely in equilibrium.

- (b) Find the angle between AB and the downward vertical at A.
- 2. A lorry of mass 1800 kg travels along a straight horizontal road. The lorry's engine is working at a constant rate of 30 kW. When the lorry's speed is 20 m s^{-1} , its acceleration is 0.4 m s^{-2} . The magnitude of the resistance to the motion of the lorry is *R* newtons.

(a) Find the value of R.

The lorry now travels up a straight road which is inclined at an angle α to the horizontal, where sin $\alpha = \frac{1}{12}$. The magnitude of the non-gravitational resistance to motion is *R* newtons. The lorry travels at a constant speed of 20 m s⁻¹.

(b) Find the new rate of working of the lorry's engine.

(5)

(2)

(3)

(4)

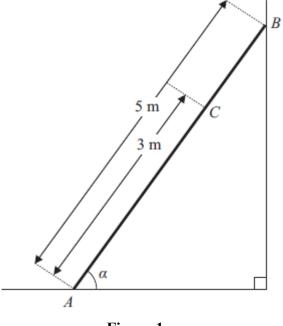


Figure 1

A ladder, of length 5 m and mass 18 kg, has one end A resting on rough horizontal ground and its other end B resting against a smooth vertical wall. The ladder lies in a vertical plane perpendicular to the wall and makes an angle α with the horizontal ground, where $\tan \alpha = \frac{4}{3}$, as shown in Figure 1. The coefficient of friction between the ladder and the ground is μ . A woman of mass 60 kg stands on the ladder at the point C, where AC = 3 m. The ladder is on the point of slipping. The ladder is modelled as a uniform rod and the woman as a particle.

Find the value of μ .

(9)

- 4. At time *t* seconds the velocity of a particle *P* is $[(4t-5)\mathbf{i}+3\mathbf{j}] \text{ m s}^{-1}$. When t = 0, the position vector of *P* is $(2\mathbf{i}+5\mathbf{j})$ m, relative to a fixed origin *O*.
 - (a) Find the value of t when the velocity of P is parallel to the vector \mathbf{j} .
 - (b) Find an expression for the position vector of P at time t seconds.

(4)

(1)

- A second particle Q moves with constant velocity $(-2\mathbf{i} + c\mathbf{j}) \text{ m s}^{-1}$. When t = 0, the position vector of Q is $(11\mathbf{i} + 2\mathbf{j}) \text{ m}$. The particles P and Q collide at the point with position vector $(d\mathbf{i} + 14\mathbf{j}) \text{ m}$.
- (c) Find
 - (i) the value of c,
 - (ii) the value of d.

(5)

5. The point *A* lies on a rough plane inclined at an angle θ to the horizontal, where $\sin \theta = \frac{24}{25}$. A particle *P* is projected from *A*, up a line of greatest slope of the plane, with speed *U* m s⁻¹. The mass of *P* is 2 kg and the coefficient of friction between *P* and the plane is $\frac{5}{12}$. The particle comes to instantaneous rest at the point *B* on the plane, where *AB* =1.5 m. It then moves back down the plane to *A*.

(a) Find the work done against friction as P moves from A to B .	(4)
(b) Use the work-energy principle to find the value of U .	
(c) Find the speed of P when it returns to A .	(4)
	(3)

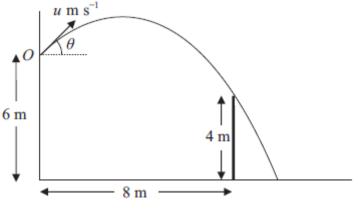


Figure 2

A ball is thrown from a point O, which is 6 m above horizontal ground. The ball is projected with speed $u \text{ m s}^{-1}$ at an angle θ above the horizontal. There is a thin vertical post which is 4 m high and 8 m horizontally away from the vertical through O, as shown in Figure 2. The ball passes just above the top of the post 2 s after projection. The ball is modelled as a particle.

(a) Show that $\tan \theta = 2.2$.	
(b) Find the value of u	(5)
(b) Find the value of u .	(2)
The ball hits the ground T seconds after projection.	

(c)	Find	the	value	of T
(\mathcal{L})	rmu	uic	value	011

(3)

Immediately before the ball hits the ground the direction of motion of the ball makes an angle α with the horizontal.

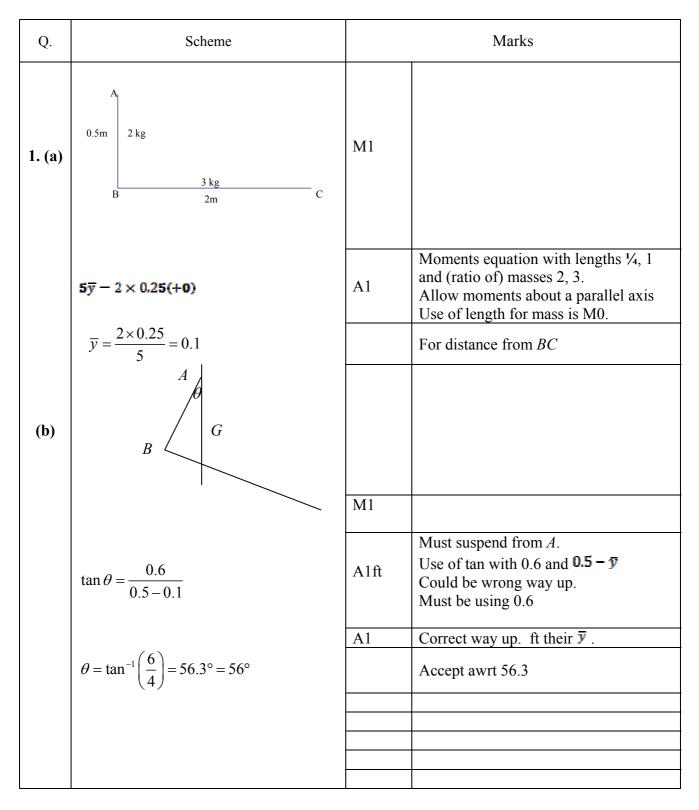
(d) Find α .	
	(5)

- 7. A particle A of mass m is moving with speed u on a smooth horizontal floor when it collides directly with another particle B, of mass 3m, which is at rest on the floor. The coefficient of restitution between the particles is e. The direction of motion of A is reversed by the collision.
 - (a) Find, in terms of e and u,
 - (i) the speed of A immediately after the collision,
 - (ii) the speed of *B* immediately after the collision.

(7)

After being struck by A the particle B collides directly with another particle C, of mass 4m, which is at rest on the floor. The coefficient of restitution between B and C is 2e. Given that the direction of motion of B is reversed by this collision,

(*b*) find the range of possible values of *e*,


- (6)
- (c) determine whether there will be a second collision between A and B.

(3)

TOTAL FOR PAPER: 75 MARKS

END

January 2013 6678 M2 Mark Scheme

Q.	Scheme		Marks
2 (a)	$R \xleftarrow{1800 \text{ kg}} T$	B1	
	$T = \frac{30000}{20} (=1500)$	M1	Use of $P = Fv$
	T - R = 1800a	A1	Equation of motion. Need all 3 terms. Condone sign errors
	$T - R = 1800 \times 0.4$ R = 1500 - 1800 × 0.4 = 780	A1	Equation correct (their T) Only
(b)	$N \rightarrow 20 \text{ m s}^{-1}$ $780 \leftarrow 1$ $780 \leftarrow 1$ 1800g	M1	
	$T - 1800g\sin\alpha - R = 0$	A1	Equation of motion. Need all 3 terms. Weight must be resolved. Condone cos for sin. Condone sign errors Correct equation. Allow with <i>R</i> not substituted or with their <i>R</i> .
	$T = 1800 \times \frac{1}{12}g + 780$	DM1	
	Power = $\left(1800 \times \frac{1}{12}g + 780\right) \times 20$	A1	Use of $P = Tv$
		A1	Correctly substituted equation (for their <i>R</i>)
	= 45000 W or 45 kW		cao

Q	Scheme		Marks
3	P R $2 m$ B $0.5 m$ 0.5		
	$A \xrightarrow{\alpha} F$ $F = \mu N$ $R(\uparrow) \qquad 18g + 60g = N$ $= 78g$ $P(-x) = P = F = xN$	B1 M1 A1	Used. Condone an inequality. Resolve vertically
P A C	$R(\rightarrow) R = F = \mu N$ 2.5 × 18g cos a + 3 × 60g cos a = 5F sin a 18g × 2.5 cos a + 60g × 3 cos a = R × 5 sin a 1 cos a = 1 cos a + 2 ci = 2 ci	M1A2	Moments equation. Condone sign errors. Condone sin/cos confusion -1 each error
B W	$\frac{1}{2}\cos\alpha \times 18g + 3\sin\alpha F + 2\sin\alpha R = 3\cos\alpha N$ $5\cos\alpha N = 5\sin\alpha F + 2.5\cos\alpha \times 18g + 2\cos\alpha \times 60$ $60g \times \frac{1}{2}\cos\alpha + 2.5N\cos\alpha = 2.5R\sin\alpha + 2.5F\sin\alpha$ $45 \times \frac{3}{5}g + 180 \times \frac{3}{5}g = 4R$	DM1	Eliminate α . Dependent on the second M1.
	$R = \frac{135}{4}g$ $78g\mu = \frac{135}{4}g$ $\mu = \frac{135}{4 \times 78} = \frac{135}{312} = 0.432 = 0.43$	DM1 A1	Equation in μ only. (Dependent on the first two M marks.) NB g cancels. 0.43269, 225 45 520 40 423
4	4×78 312 NB If use just two moments equations, M1A2 for th Remaining marks as above.	e better at B1	520 , 104 , awrt 0.433 Do not accept an inequality. tempt, M1A1 for the other.

Q	Sch	eme		Marks
(a)	$t = \frac{5}{4}$		M1	1.25
(b)	$\mathbf{r} = (2t^2 - 5t)\mathbf{i} + 3t\mathbf{j}(+\mathbf{c})$			Integrate the velocity vector
	$t = 0 2\mathbf{i} + 5\mathbf{j} = \mathbf{c}$		A1 DM1 A1	NB Also correct to use suvat with $a = 4i$ and $u = -5i + 3j$. Correct Use r_0 to find C
(c)	$\mathbf{r} = (2t^2 - 5t)\mathbf{i} + 3t\mathbf{j} + (2\mathbf{i} + (2t^2 - 5t + 2)\mathbf{i} + (3t + 5)\mathbf{j})$ $\mathbf{r}_o = 11\mathbf{i} + 2\mathbf{j} - 2t\mathbf{i} + ct\mathbf{j}$	- 5))	B1	oe Correct j component of \mathbf{r}_{Q}
	$\mathbf{r}_{\underline{o}} = 1 \mathbf{i} \mathbf{i} + 2\mathbf{j} - 2t\mathbf{i} + ct\mathbf{j}$ $(11 - 2t)\mathbf{i} + (2 + ct)\mathbf{j}$			Do not actually require the whole thing - can answer the Q by considering only the j component.
	$\mathbf{r}_{P} = \left(2t^{2} - 5t + 2\right)\mathbf{i} + \left(3t + 2\right)\mathbf{i}$	5) j	2,2 5	
	$\mathbf{r}_{Q} = \mathbf{r}_{P} = d\mathbf{i} + 14\mathbf{j}$		$2t^2 - 5t$	4
	3t + 5 = 14	$2l^{2} - 3l - 9$ (2l + 3)(l - 3) = 0 (- 2)	M1	Form an equation in <i>t</i> only
	$t = 3$ $t = 3$ $2 + ct = 14 \implies c = 4$ $d = 11 - 2 \times 3 = 5$ or $d = 2 \times 3^{2} - 5 \times 3 + 2 \implies d = 5$		A1 A1 ft	Their <i>t</i> Their <i>t</i>
	Alt: $2t^2 - 5t + 2 = 11 - 2t = d \implies t = \frac{11 - d}{2}$			
	$2\left(\frac{11-d}{2}\right)^2 - 5\left(\frac{11-d}{2}\right) + 2 = d,$ $d^2 - 19d + 70 = 0 = (d-5)(d-14)$			

Q.	Scheme		Marks
5	$U m s^{1}$ $H = 1.5 m$ $H = 2g$		
(a)	$N = 2g\cos\theta = \frac{14}{25}g$	M1	Resolve perpendicular to plane. Condone trig confusion.
	$F = \mu N = \frac{5}{12} \times \frac{14}{25} g = \frac{7g}{30}$	B1	Correct value of F seen or implied
	Work done $=\frac{7}{30}g \times 1.5 = 3.43 = 3.4 \text{ J}$	DM1	Their F x 1.5
		A1	$\frac{7g}{20}$, 3.4 or 3.43 only Energy equation - needs all 3 terms,
(b)	$3.43 + 2g\sin\theta \times 1.5 = \frac{1}{2} \times 2U^2$	M1	but condone sign errors & trig confusion. Must have an expression for the vertical height.
	<i>U</i> = 5.626 = 5.6	A1 A1 A1	Correct with one slip for their WD. All correct for their WD 5.6 & 5.63 only
(c)	$v m s^{-1}$ 1.5 m		
	$2g\sin\theta \times 1.5 = 3.43 + \frac{1}{2} \times 2v^2$	M1	Energy equation - needs all three terms. Condone sign errors & trig. confusion. Extra terms give M0.
	$\frac{1}{2} \times 2U^{2} = 2 \times 3.43 + \frac{1}{2} \times 2v^{2}$ $v^{2} = 3g \sin \theta - 3.43$	A1	All correct (their WD & U)
Alt	v = 4.979 Speed = 5.0 m s ⁻¹	A1	Accept 4.98
(c)	$mg\sin\theta - F = ma$ and $v^{z} = (u^{z}) + 2as$	M1	Equation of motion - needs all three terms. Condone sign errors & trig. confusion. Together with <i>suvat</i>
	$2g\sin\theta - \frac{7g}{30} = \frac{48g}{25} - \frac{7g}{30} = 2a$		
	$a = \frac{253g}{300} = 8.26$ $v^2 = 24.794, v = 5.0$	A1	A coort 4.08
	$v^{-} = 24.734$, $v = 5.0$	A1	Accept 4.98

Q.	Scheme	Marks		
6 (a)	$2 = -2u\sin\theta + \frac{1}{2}g \times 4$	M1	Vertical distance. Condone sign errors. Must have used $t = 2$, but could be using $u_y = u \sin \theta$	
	$\left(-2 = u\sin\theta t - \frac{1}{2}gt^{2}\right)$ $u\sin\theta = g - 1$	A1	All correct	
	$2u\cos\theta = 8 (u\cos\theta = 4)$ $(u\cos\theta t = 8)$	B1	Horizontal distance. Accept $u_x = 4$ o.e.	
	$\tan\theta = \frac{g-1}{4} = 2.2$	M1	Divide to obtain expression for $\tan \theta$	
		A1	Given answer It is acceptable to quote and use the equation for the projectile path. Incorrect equation is 0/5.	
(b)	$u\cos\theta = 4$	M1	Use the horizontal distance and θ to find u 9.67 or 9.7	
	$u = \frac{4}{\cos \theta} = 9.66 = 9.7$	A1	NB θ = 65.6° leading to 9.68 is an accuracy penalty.	
	OR use components from (a) and Pythagoras.			
(c)	$6 = (1 - g)T + \frac{1}{2} \times 9.8T^2$	M1	Equation for vertical distance $= \pm 6$ to give a quadratic in <i>T</i> . Allow their u_y	
	$4.9T^{2} - 8.8T - 6 = 0$ $T = \frac{8.8 \pm \sqrt{\left[(-)8.8\right]^{2} + 24 \times 4.9}}{9.8}$ T = 2.323 = 2.32 or 2.3	DM1 A1	Solve a 3 term quadratic 2.3 or 2.32 only	
(d)	$v^2 = 8.8^2 + 2g \times 6$ or $v = -8.8 + gT$	M1 A1	Use <i>suvat</i> to find vertical speed Correct equation their u_y , T	
	v = 13.96 Horiz speed = 4			
	$\tan \alpha = \frac{v}{4}$	DM1	Correct trig. with their vertical speed to find the required angle.	
	$\alpha = 74.01 = 74^{\circ}$	A1 A1	Correct equation 74 ^w or 74.0 ^w . Allow 106.	
	Alternative:			
	$\frac{1}{2}m(9.6664)^2 + 6mg = \frac{1}{2}mv^2$	M1	Conservation of energy to find speed	
	v = 14.52719	A1		
	$\cos\alpha = \frac{4}{14.5}$	DM1 A1	Correct method for α	
	$\alpha = 74.01 = 74^{\circ}$	A1	Allow 106	

Q	Scheme		Marks
7(a)	$\begin{array}{ccc} & & u & & & 0 \\ A & & & \bullet & B \\ & & & & M \\ & & & & & M \\ & & & & & &$		If the signs on their diagram and in their working are inconsistent, ignore the diagram. Penalise inconsistency between the two equations in the second accuracy mark.
	mu = -mv + 3mw	M1	CLM. Allow for v in either direction. Needs all 3 terms. Condone sign errors. v in either direction. Ignore diagram if
	u = -v + 3w	A1	equations "correct" but inconsistent with diagram.
	eu = w + v	M1	Impact law. Must be the right way round, but condone sign errors
		A1	Correct equation. Signs consistent with CLM equn.
	$w = \frac{u}{4} (1 + e)$	DM1	Solve for <i>v</i> or <i>w</i> .
		A1	One correct
	$v = -w + eu = \frac{u}{4}(3e - 1)$	A1	Both correct. $1 - 3e \rightarrow A0$ for v
(b) $\begin{array}{c} $	A1ft B1ft	If the signs on their diagram and in their working are inconsistent, ignore the diagram. Penalise inconsistency between the two equations in the B mark. CLM for their w . Correct unsimplified (their w) Impact law. Must be the right way up. Their w Solve for (7) Y	
(c)	Or $2ue(1+e) - \frac{3u}{4}(1+e) = 7Y$ $\rightarrow e > \frac{3}{8}$ $Y > 0 \rightarrow \frac{3}{8} < e \le \frac{1}{2}$ $\frac{u}{28}(1+e)(8e-3) > \frac{u}{4}(3e-1)$ $2e^2 - 4e + 1 > 0$	A1 A1 M1	NB No longer ft. Condone <. For a second collision their <i>Y</i> > their <i>v</i>
	$e = \frac{4 \pm \sqrt{16 - 8}}{4} = 1.707 , \ 0.293$	DM1	Obtain the critical values
	$2e^2 - 4e + 1 < 0$ for $\frac{3}{8} < e \le \frac{1}{2}$ so no second collision.	A1	Compare 0.293 (o.e.) with $\frac{3}{8}$ to reach correct conclusion for correct reason.